[原创]HDU 5895&&2016 ACM/ICPC Asia Regional Shenyang Online1004 Mathematician QSC [矩阵加速+欧拉降幂]【数论】
[原创]HDU 5895&&2016 ACM/ICPC Asia Regional Shenyang Online1004 Mathematician QSC [矩阵加速+欧拉降幂]【数论】
2016-09-19 20:02:35 Tabris_ 阅读数:454
博客爬取于2020-06-14 22:43:15
以下为正文
版权声明:本文为Tabris原创文章,未经博主允许不得私自转载。
https://blog.csdn.net/qq_33184171/article/details/52588817
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5895
------------------------.
Mathematician QSC
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 222 Accepted Submission(s): 109
Problem Description
QSC dream of becoming a mathematician, he believes that everything in this world has a mathematical law.
Through unremitting efforts, one day he finally found the QSC sequence, it is a very magical sequence, can be calculated by a series of calculations to predict the results of a course of a semester of a student.
This sequence is such like that, first of all,f(0)=0,f(1)=1,f(n)=f(n−2)+2∗f(n−1)(n≥2)Then the definition of the QSC sequence is g(n)=∑ni=0f(i)^2. If we know the birthday of the student is n, the year at the beginning of the semester is y, the course number x and the course total score s, then the forecast mark is x^g(n∗y)%(s+1).
QSC sequence published caused a sensation, after a number of students to find out the results of the prediction is very accurate, the shortcoming is the complex calculation. As clever as you are, can you write a program to predict the mark?
Input
First line is an integer T(1≤T≤1000).
The next T lines were given n, y, x, s, respectively.
n、x is 8 bits decimal integer, for example, 00001234.
y is 4 bits decimal integer, for example, 1234.
n、x、y are not negetive.
1≤s≤100000000
Output
For each test case the output is only one integer number ans in a line.
Sample Input
2
20160830 2016 12345678 666
20101010 2014 03030303 333
Sample Output
1
317
Source
2016 ACM/ICPC Asia Regional Shenyang Online
------------------------.
题目大意:
就是给你四个数n,y,x,s,
让你求x^g(n∗y)%(s+1).
其中g(n)=∑(i->n)f(i)^2;
f(0)=0,f(1)=1,f(n)=f(n−2)+2∗f(n−1)(n≥2)
解题思路:
对于x的指数g(n) 是一个很大的数 所以需要想办法把它改成我们能计算的 就是欧拉降幂
然后只要求解g(n)就行了
很容易的想到g(n)=f(n)*f(n+1)/2 其中f(n)只用一个矩阵加速就能很快地求解
但是随后发现这样并不行 因为f(n)已经是对Phi(s+1)取模之后的数了 在/2之后之就会出错 然后想到求逆元的办法解决 但是随后发现虽然2是一个质数但是并不能满足gcd(2,s+1)==1 因为s+1%2可能等于0 于是这个思路就GG了。。。
最后还是看了ICPCCamp的题解 才知道解法
最终还是一个矩阵快速幂
(f[n]^2,f[n+1]^2,f[n]*f[n+1],g[n])
↑这是左矩阵
[0,1,0,0]
[1,4,2,1]
[0,4,1,0]
[0,0,0,1] ←这是右矩阵
是这么解释的
相信你已经看懂了
//
就是思维太局限了 首先欧拉降幂不知道
再后来矩阵不会构造 导致这场的GG。。
//
附本题代码
--------------------------------------.
1 | # include<bits/stdc++.h> |