[原创]HDU 5534 Partial Tree [完全背包]【动态规划+思维】
[原创]HDU 5534 Partial Tree [完全背包]【动态规划+思维】
2017-07-05 09:31:07 Tabris_ 阅读数:480
博客爬取于2020-06-14 22:39:47
以下为正文
版权声明:本文为Tabris原创文章,未经博主允许不得私自转载。
https://blog.csdn.net/qq_33184171/article/details/74374144
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5534
————————————————————————————————————————
Partial Tree
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1401 Accepted Submission(s): 693
Problem Description
In mathematics, and more specifically in graph theory, a tree is an undirected graph in which any two nodes are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.
You find a partial tree on the way home. This tree has n nodes but lacks of n−1 edges. You want to complete this tree by adding n−1 edges. There must be exactly one path between any two nodes after adding. As you know, there are nn−2 ways to complete this tree, and you want to make the completed tree as cool as possible. The coolness of a tree is the sum of coolness of its nodes. The coolness of a node is f(d), where f is a predefined function and d is the degree of this node. What’s the maximum coolness of the completed tree?
Input
The first line contains an integer T indicating the total number of test cases.
Each test case starts with an integer n in one line,
then one line with n−1 integers f(1),f(2),…,f(n−1).
1≤T≤2015
2≤n≤2015
0≤f(i)≤10000
There are at most 10 test cases with n>100.
Output
For each test case, please output the maximum coolness of the completed tree in one line.
Sample Input
2
3
2 1
4
5 1 4
Sample Output
5
19
————————————————————————————————————————
题目大意:
有n个节点,让你加n-1条边构建成一棵联通树,使得其权值和最大
题目给定节点度数为i的权值为f(i),
解题思路:
首先能够确定的是对于整棵树度数和为,
如果树联通的话,那么每个节点度数至少为.
于是问题就变成如何分配这几个度数
可以将这个问题变成在容量为的背包中不限次数拿取体积为价值为这样一个完全背包问题.
之后就是因为节点度数至少为了,而在转移的时候至少都是度数为的节点
那么转移过程应该怎么办?
这样考虑,如果多了一个度数为的节点,那么同时也就少了一个度数为的节点
显然在转移的时候先减去,最后在结果加回,那么就把应该有的度数为的节点计算上了.又因为最后这个是常数,不会影响dp转移的结果
附本题代码
————————————————————————————————————————
1 | int n; |