[原创]大素数统计1e11以内 【数论】
2016-09-20 17:32:57 Tabris_ 阅读数:653
博客爬取于2020-06-14 22:43:14
以下为正文
版权声明:本文为Tabris原创文章,未经博主允许不得私自转载。
https://blog.csdn.net/qq_33184171/article/details/52598186
算法原理:https://en.wikipedia.org/wiki/Prime-counting_function
素数统计
这是一篇对素数问题描述非常详细的一篇博客了
代码一:
复杂度大概O(n^(3/4))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| # include <bits/stdc++.h> # define ll long long using namespace std; ll f[340000],g[340000],n; void init(){ ll i,j,m; for(m=1;m*m<=n;++m)f[m]=n/m-1; for(i=1;i<=m;++i)g[i]=i-1; for(i=2;i<=m;++i){ if(g[i]==g[i-1])continue; for(j=1;j<=min(m-1,n/i/i);++j){ if(i*j<m)f[j]-=f[i*j]-g[i-1]; else f[j]-=g[n/i/j]-g[i-1]; } for(j=m;j>=i*i;--j)g[j]-=g[j/i]-g[i-1]; } } int main(){ while(scanf("%I64d",&n)!=EOF){ init(); cout<<f[1]<<endl; } return 0; }
|
代码二:
复杂度大概O(n^(2/3))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
| # include<cstdio> # include<cmath> using namespace std; # define LL long long const int N = 5e6 + 2; bool np[N]; int prime[N], pi[N]; int getprime() { int cnt = 0; np[0] = np[1] = true; pi[0] = pi[1] = 0; for(int i = 2; i < N; ++i) { if(!np[i]) prime[++cnt] = i; pi[i] = cnt; for(int j = 1; j <= cnt && i * prime[j] < N; ++j) { np[i * prime[j]] = true; if(i % prime[j] == 0) break; } } return cnt; } const int M = 7; const int PM = 2 * 3 * 5 * 7 * 11 * 13 * 17; int phi[PM + 1][M + 1], sz[M + 1]; void init() { getprime(); sz[0] = 1; for(int i = 0; i <= PM; ++i) phi[i][0] = i; for(int i = 1; i <= M; ++i) { sz[i] = prime[i] * sz[i - 1]; for(int j = 1; j <= PM; ++j) phi[j][i] = phi[j][i - 1] - phi[j / prime[i]][i - 1]; } } int sqrt2(LL x) { LL r = (LL)sqrt(x - 0.1); while(r * r <= x) ++r; return int(r - 1); } int sqrt3(LL x) { LL r = (LL)cbrt(x - 0.1); while(r * r * r <= x) ++r; return int(r - 1); } LL getphi(LL x, int s) { if(s == 0) return x; if(s <= M) return phi[x % sz[s]][s] + (x / sz[s]) * phi[sz[s]][s]; if(x <= prime[s]*prime[s]) return pi[x] - s + 1; if(x <= prime[s]*prime[s]*prime[s] && x < N) { int s2x = pi[sqrt2(x)]; LL ans = pi[x] - (s2x + s - 2) * (s2x - s + 1) / 2; for(int i = s + 1; i <= s2x; ++i) ans += pi[x / prime[i]]; return ans; } return getphi(x, s - 1) - getphi(x / prime[s], s - 1); } LL getpi(LL x) { if(x < N) return pi[x]; LL ans = getphi(x, pi[sqrt3(x)]) + pi[sqrt3(x)] - 1; for(int i = pi[sqrt3(x)] + 1, ed = pi[sqrt2(x)]; i <= ed; ++i) ans -= getpi(x / prime[i]) - i + 1; return ans; } LL lehmer_pi(LL x) { if(x < N) return pi[x]; int a = (int)lehmer_pi(sqrt2(sqrt2(x))); int b = (int)lehmer_pi(sqrt2(x)); int c = (int)lehmer_pi(sqrt3(x)); LL sum = getphi(x, a) +(LL)(b + a - 2) * (b - a + 1) / 2; for (int i = a + 1; i <= b; i++) { LL w = x / prime[i]; sum -= lehmer_pi(w); if (i > c) continue; LL lim = lehmer_pi(sqrt2(w)); for (int j = i; j <= lim; j++) sum -= lehmer_pi(w / prime[j]) - (j - 1); } return sum; } int main() { init(); LL n; while(~scanf("%lld",&n)) { printf("%lld\n",lehmer_pi(n)); } return 0; }
|
4因子个数统计
代码一:
复杂度大概O(n^(3/4))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
| # include <bits/stdc++.h> # define ll long long using namespace std; ll f[340000],g[340000],n,k;//f[i] means pi(n/i),g[i] means pi(i) ll dp(ll n){ ll i,j,m,res=0; for(m=1;m*m<=n;++m)f[m]=n/m-1; for(i=1;i<=m;++i)g[i]=i-1; for(i=2;i<=m;++i){ if(g[i]==g[i-1])continue; for(j=1;j<=min(m-1,n/i/i);++j){ if(i*j<m)f[j]-=f[i*j]-g[i-1]; else f[j]-=g[n/i/j]-g[i-1]; } for(j=m;j>=i*i;--j)g[j]-=g[j/i]-g[i-1]; } for(i=2;i<m;++i){ if(g[i]==g[i-1])continue; res+=f[i]-g[i]; }return res; } int main(){ scanf("%I64d",&n);k=pow(n,1.0/3)+1e-9; printf("%I64d\n",dp(n)+g[k]); }
|
代码二:
复杂度大概O(n^(2/3))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
| # include <cstring> # include <cstdio> # include <cstdlib> # include <ctime> # include <cmath> # include <iostream> # include <algorithm> # include <vector> # include <map> # include <set> # include <queue> # include <stack> # include <string> # include <bitset> using namespace std; typedef long long LL; typedef pair<int,int> PII; typedef pair<LL,LL> PLL; # define clr(a,b) memset(a,b,sizeof(a)) # define MP make_pair # define PB push_back # define lrt rt<<1 # define rrt rt<<1|1 # define lson l,m,lrt using namespace std; /*------------------------- template ------------------------------*/ const int N = 5e6+2; bool np[N]; int p[N],pi[N]; int getprime(){ int cnt=0; np[0]=np[1]=true; pi[0]=pi[1]=0; for(int i = 2; i < N; ++i){ if(!np[i]) p[++cnt] = i; for(int j = 1;j <= cnt && i * p[j] < N; ++j) { np[i * p[j]] = true; } pi[i]=cnt; } return cnt; } const int M = 7; const int PM = 2*3*5*7*11*13*17; int phi[PM+1][M+1],sz[M+1]; void init(){ getprime(); sz[0]=1; for(int i=0;i<=PM;++i) phi[i][0]=i; for(int i=1;i<=M;++i){ sz[i]=p[i]*sz[i-1]; for(int j=1;j<=PM;++j){ phi[j][i]=phi[j][i-1]-phi[j/p[i]][i-1]; } } } int sqrt2(LL x){ LL r = (LL)sqrt(x-0.1); while(r*r<=x) ++r; return int(r-1); } int sqrt3(LL x){ LL r = (LL)cbrt(x-0.1); while(r*r*r<=x) ++r; return int(r-1); } LL getphi(LL x,int s){ if(s == 0) return x; if(s <= M) return phi[x%sz[s]][s]+(x/sz[s])*phi[sz[s]][s]; if(x <= p[s]*p[s]) return pi[x]-s+1; if(x <= p[s]*p[s]*p[s] && x< N){ int s2x = pi[sqrt2(x)]; LL ans = pi[x]-(s2x+s-2)*(s2x-s+1)/2; for(int i=s+1;i<=s2x;++i){ ans += pi[x/p[i]]; } return ans; } return getphi(x,s-1)-getphi(x/p[s],s-1); } LL getpi(LL x){ if(x < N) return pi[x]; LL ans = getphi(x,pi[sqrt3(x)])+pi[sqrt3(x)]-1; for(int i=pi[sqrt3(x)]+1,ed=pi[sqrt2(x)];i<=ed;++i){ ans -= getpi(x/p[i])-i+1; } return ans; } LL lehmer_pi(LL x){ if(x < N) return pi[x]; int a = (int)lehmer_pi(sqrt2(sqrt2(x))); int b = (int)lehmer_pi(sqrt2(x)); int c = (int)lehmer_pi(sqrt3(x)); LL sum = getphi(x, a) + LL(b + a - 2) * (b - a + 1) / 2; for (int i = a + 1; i <= b; i++) { LL w = x / p[i]; sum -= lehmer_pi(w); if (i > c) continue; LL lim = lehmer_pi(sqrt2(w)); for (int j = i; j <= lim; j++) { sum -= lehmer_pi(w / p[j]) - (j - 1); } } return sum; } //照素数统计只多了这么个部分.. LL getans(LL x){ // x < 1e11 LL ans = pi[sqrt3(x)]; for(int i=1,ed=pi[sqrt2(x-1)];i<=ed;++i){ ans += lehmer_pi(x/p[i])-i; } return ans; } int main(){
init(); LL n; while(cin>>n){ cout<<getans(n)<<endl; } return 0; }
|