[原创]HDU 4135 Co-prime [容斥定理]【数论】
[原创]HDU 4135 Co-prime [容斥定理]【数论】
2016-08-11 19:59:34 Tabris_ 阅读数:238
博客爬取于2020-06-14 22:43:53
以下为正文
版权声明:本文为Tabris原创文章,未经博主允许不得私自转载。
https://blog.csdn.net/qq_33184171/article/details/52186000
题目连接: 传送阵
------------------------------.
Co-prime
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3902 Accepted Submission(s): 1536
Problem Description
Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
Input
The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
Output
For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
Sample Input
2
1 10 2
3 15 5
Sample Output
Case #1: 5
Case #2: 10
Hint
In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.
------------------------------------.
题目大意: 就是求a~b区间内与n互质的数的个数
解题思路:与n互质的数的个数也就是gcd(x,n)==1.但是数据量非常大 所以暴力不可解
于是换个思路 就是求gcd(x,n)!=1的数的个数 然后区间总数减一下 就能得到结果
gcd(x,n)!=1就简单了
只要求出[1~a-1][1~b]这两个区间内的与n有约数(非1)的数的个数
想到把n质因子分解 然后容斥定理求解即可
附本题代码
----------------------------------.
1 | # include <stdio.h> |