1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
| # include <iostream> # include <stdio.h> # include <string.h> # include <algorithm> # include <math.h> # include <string> # include <set>
using namespace std;
# define LL __int64
const int MOD = 1e9+7; const double eps = 1e-8;
struct point { double x,y,r;
} a;
double multi(point p1,point p2,point p0) { return((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y)); }
point jian (point &a,point &b) { point ttt;
ttt.x=b.x-a.x; ttt.y=b.y-a.y;
return ttt; }
double mod(point a) { return a.x*a.x+a.y*a.y; }
double dis(point a,point b) { return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y); }
point GetPoint(int cx,int cy,int r,double k,double b) {
//列方程 /* (1 + k^2)*x^2 - x*(2*cx -2*k*(b -cy) ) + cx*cx + ( b - cy)*(b - cy) - r*r = 0 */ double x1,y1,x2,y2; double c = cx*cx + (b - cy)*(b- cy) -r*r; double aa = (1 + k*k); double b1 = (2*cx - 2*k*(b - cy));
//得到下面的简化方程 // a*x^2 - b1*x + c = 0;
double tmp = sqrt(b1*b1 - 4*aa*c); x1 = ( b1 + tmp )/(2*aa); y1 = k*x1 + b; x2 = ( b1 - tmp)/(2*aa); y2 = k*x2 + b;
//判断求出的点是否在圆上
double res1 = (x1 -a.x)*(x1 -a.x) + (y1 - a.y)*(y1 -a.y); double res2 = (x2 -a.x)*(x2 -a.x) + (y2 - a.y)*(y2 -a.y);
point p; if( res1<res2) //我这里 r = 50,res = 2500.632,还是比较准确的 { p.x = x1; p.y = y1; } else { p.x = x2; p.y = y2; }
return p; }
point c,b,aa;
bool judge(/*Circle c,point a,point b*/) // 判断圆与直线相交 { point ob=jian(c,b),oa=jian(c,a);
double cosx = (a.x*b.x+a.y*b.y)/sqrt(mod(oa)*mod(ob));
double s = fabs(multi(a,b,c)),AB = dis(a,b);
if(cosx>=0&&c.r*c.r<dis(c,a)&&c.r*c.r<dis(b,a)) return true;
if(cosx<=0&&s*s>=c.r*c.r*AB)//直线距离 return true;
return false; } int main() { int t,p=0,flag=0; scanf("%d",&t); while(t--) { flag=0; scanf("%lf%lf%lf",&c.x,&c.y,&c.r); scanf("%lf%lf%lf%lf",&a.x,&a.y,&aa.x,&aa.y); scanf("%lf%lf",&b.x,&b.y);
if( (b.x-a.x)*aa.y == (b.y-a.y)*aa.x ) //判断 A 能不能直线走到 B {
//sudu fangxiang 判断之间you没有球被弹开 if(((b.y-a.y)*aa.y>=0&&(b.x-a.x)*aa.x>=0) && judge()) { flag=1; } } else { //直线方程 y=kx+b double k=aa.y/aa.x,C=a.y-a.x*aa.y/aa.x;
point pj = GetPoint(c.x,c.y,c.r,k,C); point pjo= jian(pj,c),pja=jian(pj,a),pjb=jian(pj,b);
//printf("%.4lf %.4lf\n", pj.x, pj.y);
double sinx1 = multi(a,c,pj)/sqrt(mod(pjo)*mod(pja)); double sinx2 = multi(b,c,pj)/sqrt(mod(pjo)*mod(pjb));
sinx1=fabs(sinx1); sinx2=fabs(sinx2);
// printf("%.4lf %.4lf\n",sinx1,sinx2);
if( sinx1 <= sinx2+eps && sinx1 >= sinx2-eps ) if( pja.x * aa.x <= 0 && pja.x * aa.x <= 0 ) flag=1; }
if(flag) printf("Case #%d: Yes\n",++p); else printf("Case #%d: No\n",++p);
} return 0; }
/*
// YES 0 0 1 3 1 -2 -1 3 -1
0 0 1 3 1 -2 -1 5 -2
0 0 1 -1 2 1 -1 1 2
// NO 0 0 1 2 2 0 1 -1 -1
*/
|