[转载]POJ 2635 The Embarrassed Cryptographer [高精度求余+同余模定理]【数论】

2016-04-29 14:45:29 Tabris_ 阅读数:375


博客爬取于2020-06-14 22:44:30
以下为正文

版权声明:本文为Tabris原创文章,未经博主允许不得私自转载。
https://blog.csdn.net/qq_33184171/article/details/51281788


ACMer与Coder的交流分享地

POJ2635-The Embarrassed Cryptographer

转载请注明出处:優YoU http://user.qzone.qq.com/289065406/blog/1309305108

大致题意:

给定一个大数K,K是两个大素数的乘积的值。

再给定一个int内的数L

问这两个大素数中最小的一个是否小于L,如果小于则输出这个素数。

解题思路:

首先对题目的插图表示无语。。。

高精度求模+同余模定理

1、 Char格式读入K。把K转成千进制Kt,同时变为int型。

把数字往大进制转换能够加快运算效率。若用十进制则耗费很多时间,会TLE。

千进制的性质与十进制相似。

例如,把K=1234567890转成千进制,就变成了:Kt=[ 1][234][567][890]。

为了方便处理,我的程序是按“局部有序,全局倒序”模式存放Kt

即Kt=[890][567][234][1 ] (一个中括号代表一个数组元素)

2、 素数打表,把10^6内的素数全部预打表,在求模时则枚举到小于L为止。

注意打表不能只打到100W,要保证素数表中最大的素数必须大于10^6,否则当L=100W且K为GOOD时,会因为数组越界而RE,这是因为越界后prime都是负无穷的数,枚举的while(prime[pMin]<L)循环会陷入死循环

3、 高精度求模。

主要利用Kt数组和同余模定理。

例如要验证123是否被3整除,只需求模124%3

但当123是一个大数时,就不能直接求,只能通过同余模定理对大数“分块”间接求模

具体做法是:

先求1%3 = 1

再求(1*10+2)%3 = 0

再求 (0*10+4)% 3 = 1

那么就间接得到124%3=1,这是显然正确的

而且不难发现, (1*10+2)*10+4 = 124

这是在10进制下的做法,千进制也同理,10改为1000就可以了

Source修正:

Nordic 2005

http://ncpc.idi.ntnu.no/

按 Ctrl+C 复制代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
//Memory Time
//624K 1235MS

# include<iostream>
# include<string.h>
using namespace std;

const int Range=1000100; //打表不能只打到100W,素数表中最大的素数必须大于10^6

int Kt[10000]; //千进制的K
int L;
int prime[Range+1];

/*素数组打表*/
void PrimeTable(void)
{
int pNum=0;
prime[pNum++]=2;

for(int i=3;i<=Range;i+=2) //奇偶法
{
bool flag=true;
for(int j=0;prime[j]*prime[j]<=i;j++) //根号法+递归法
if(!(i%prime[j]))
{
flag=false;
break;
}
if(flag)
prime[pNum++]=i;
}
return;
}

/*高精度K对p求模,因数检查(整除)*/
bool mod(const int* K,const int p,const int len)
{
int sq=0;
for(int i=len-1;i>=0;i--) //千进制K是逆序存放
sq=(sq*1000+K[i])%p; //同余模定理

if(!sq) //K被整除
return false;
return true;
}

int main(void)
{
PrimeTable();

char K[10000];
while(cin>>K>>L && L)
{
memset(Kt,0,sizeof(Kt));
int lenK=strlen(K);
for(int i=0;i<lenK;i++) //把K转换为千进制Kt,其中Kt局部顺序,全局倒序
{ //如K=1234567=[ 1][234][567] ,则Kt=[567][234][1 ]
int pKt=(lenK+2-i)/3-1;
Kt[pKt]=Kt[pKt]*10+(K[i]-'0');
}
int lenKt=(lenK+2)/3;

bool flag=true;
int pMin=0; //能整除K且比L小的在prime中的最小素数下标
while(prime[pMin]<L) //枚举prime中比L小的素数
{
if(!mod(Kt,prime[pMin],lenKt))
{
flag=false;
cout<<"BAD "<<prime[pMin]<<endl;
break;
}
pMin++;
}
if(flag)
cout<<"GOOD"<<endl;
}
return 0;
}

按 Ctrl+C 复制代码

Sample Input

143 10
143 20
667 20
667 30
2573 30
2573 40
4 2
6 3
6 3
15 3
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999536689 2
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999536689 3
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999536689 999981
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999536689 999982
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999536689 999983
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999536689 999984
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999536689 999985
9936798836621706335903766366605021199756127575438907144689843371764114998372849970522970722679648297 1000000
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999924165887 1000000
9999999999999999997709341477512928270733515750111494296807693217401592660013176273247584305454312971 1000000
9999999999988881245087379264540384030358544520360773252628174690915590034078934845096473005364364269 1000000
9999999999999999999999999999999999999999999999999999999999999999999997947710886296926452585995644787 1000000
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999998743929569 1000000
9999999999999999999999999999999999999999999999999999999999999999999999996406876316697599258447653751 1000000
9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999995271511 1000000
9999664515006205757944572422495695942633452678405393581216966782816097132509526872495414067984894021 1000000
0 0

Sample Output

GOOD
BAD 11
GOOD
BAD 23
GOOD
BAD 31
GOOD
BAD 2
BAD 2
GOOD
GOOD
GOOD
GOOD
GOOD
GOOD
BAD 999983
BAD 999983
BAD 587
BAD 100043
GOOD
GOOD
GOOD
GOOD
GOOD
BAD 16603
BAD 9103