[原创]第四届山东省赛 A^X mod P [预处理]【思维】
[原创]第四届山东省赛 A^X mod P [预处理]【思维】
2017-03-12 00:03:17 Tabris_ 阅读数:190
博客爬取于2020-06-14 22:41:19
以下为正文
版权声明:本文为Tabris原创文章,未经博主允许不得私自转载。
https://blog.csdn.net/qq_33184171/article/details/61466246
题目链接:http://acm.upc.edu.cn/problem.PHP?id=2219
————————————————————————————————————
2219: A^X mod P
Time Limit: 5 Sec Memory Limit: 128 MB
Submit: 142 Solved: 28
[Submit][Status][Web Board]
Description
It’s easy for ACMer to calculate A^X mod P. Now given seven integers n, A, K, a, b, m, P, and a function f(x) which defined as following.
f(x) = K, x = 1
f(x) = (a*f(x-1) + b)%m , x > 1
Now, Your task is to calculate
( A^(f(1)) + A^(f(2)) + A^(f(3)) + … + A^(f(n)) ) modular P.
Input
In the first line there is an integer T (1 < T <= 40), which indicates the number of test cases, and then T test cases follow. A test case contains seven integers n, A, K, a, b, m, P in one line.
1 <= n <= 10^6
0 <= A, K, a, b <= 10^9
1 <= m, P <= 10^9
Output
For each case, the output format is “Case #c: ans”.
c is the case number start from 1.
ans is the answer of this problem.
Sample Input
2
3 2 1 1 1 100 100
3 15 123 2 3 1000 107
Sample Output
Case #1: 14
Case #2: 63
————————————————————————————————————
题目大意:
就是给你7个数:
$ n, A, K, a, b, m, Pf(x) = \left{\begin{array}{rcl}\ K &&, x = 1 \ (a*f(x-1) + b)%m && ,x>1\end{array}\right.$
问:
$( A^{f(1)} + A^{f(2)} + A^{f(3)}+ … + A^{f(n)} ) \mod P. $
解题思路:
其实思路很好构建 ,
只要求出然后的快速幂就能求解
但是这题卡了 ,所以不能快速幂
对于求一次幂 用快速幂会非常快 但是求多次就不是很快了
我们要先预处理出所有
发现根本存不下 ,,
但是我们可以预处理出
和
这样我们就可以通过一次相乘,开快速求出了
这样下来复杂度就变成了
附本题代码
——————————————————————————————————————————————————————————————
1  | # include<bits/stdc++.h>  | 
